
46kV AL 133% TRXLPE One-Third Neutral LLDPE Primary UD

Single Conductor, 580 Mils Tree Retardant Cross Linked Polyethylene, 133% Insulation Level, One-third Concentric Neutral, Linear Low Density Polyethylene (LLDPE) Jacket

CONSTRUCTION:

- 1. **Conductor:** Moisture blocked class B compressed Aluminum ASTM B231 1350 ¾ hard H16/H26 (Non Moisture Blocked Optional)
- 2. **Conductor Shield**: Conventional Semi-conducting cross-linked copolymer; Supersmooth conductor shield optional; A conductor tape is used for cable size larger than or equal to 1500 Kcmil
- 3. **Insulation**: 580 Mils Tree Retardant Cross Linked Polyethylene 133% insulation level
- 4. Insulation Shield: Strippable semi-conducting cross-linked copolymer
- 5. **Concentric Neutral:** Helically applied soft drawn bare copper one-third concentric neutral
- 6. **Overall Jacket:** Linear Low Density Polyethylene (LLDPE) Jacket, black with red extruded stripes; PowerGlide® LLDPE jacket optional

APPLICATIONS AND FEATURES:

Southwire's 46kV cables are suited for use in wet and dry areas, conduits, ducts, troughs, trays, direct burial, sunlight, and where superior electrical properties are desired. These cables are capable of operating continuously at the conductor temperature not in excess of 90°C for normal operation. 130°C for emergency overload, and 250°C for short circuit conditions. Jacket types available that can be installed in conduit without the aid of lubrication. Rated for 1000 lbs./FT maximum sidewall pressure.

SPECIFICATIONS:

- ASTM B231 Standard Specification for Concentric-Lay-Stranded Aluminum 1350 Conductors
- ASTM B609 Standard Specification for Aluminum 1350 Round Wire, Annealed and Intermediate Tempers, for Electrical Purposes
- ICEA S-94-649 Standard for Concentric Neutral Cables Rated 5 46kV
- AEIC CS-8 Specification for extruded dielectric shielded power cables rated for 5 through 46KV
- UL 1072 Listed Listed as MV 90 When Specified

SAMPLE PRINT LEGEND:

SOUTHWIRE HI-DRI(R) [CONDUCTOR SIZE] [AWG or KCMIL] AL 46000 VOLTS TRXLPE INSULATION 580 MILS -- (NESC) -- SOUTHWIRE {MMM} {YYYY} NON-CONDUCTING JACKET

Table 1 – Weights and Measurements

Stock Number	Cond. Size	Diameter Over Conductor	Diameter Over Insulation	Insul. Thickness	Diameter Over Insulation Shield	Concentric Neutral	Neutral DC Resistance 25°C	Jacket Thickness	Approx. OD	Approx. Weight	Min Bending Radius	Max Pull Tension*
	AWG/ Kcmil	inch	inch	mil	inch	No. x AWG	Ω /1000ft	mil	inch	lb /1000ft	inch	lb
TBA	350 (37)	0.661	1.867	580	1.997	18x14	0.146	80	2.285	2119	27.4	2100
TBA	500 (37)	0.789	1.995	580	2.125	16x12	0.104	80	2.445	2544	29.3	3000
TBA	750 (61)	0.968	2.183	580	2.313	24x12	0.069	80	2.633	3151	31.6	4500
TBA	1000 (61)	1.117	2.332	580	2.462	20x10	0.052	80	2.826	3786	33.9	6000

All dimensions are nominal and subject to normal manufacturing tolerances

Table 2 – Electrical and Engineering Data

Cond. Size	DC Resistance @ 25°C	AC Resistance @ 90°C	Capacitive Reactance @ 60Hz	Inductive Reactance @ 60Hz	Charging Current	Dielectric Loss	Zero Sequence Impedance*	Positive Sequence Impedance*	Short Circuit Current @ 30 Cycle	Allowable Ampacity in Duct 90°C†	Allowable Ampacity Directly Buried 90°C‡
AWG/ Kcmil	Ω/1000ft	Ω/1000ft	MΩ*1000ft	Ω/1000ft	A/1000ft	W/1000ft	Ω/1000ft	Ω/1000ft	Amp	Amp	Amp
350 (37)	0.0505	0.064	0.066	0.049	0.402	3.202	0.207+j0.069	0.066+j0.048	6920.7	315	370
500 (37)	0.0354	0.045	0.059	0.046	0.448	3.570	0.150+j0.053	0.048+j0.046	9774.0	380	450
750 (61)	0.0236	0.030	0.052	0.043	0.515	4.102	0.102+j0.039	0.034+j0.042	14660.9	470	545
1000 (61)	0.0177	0.023	0.047	0.042	0.567	4.520	0.077+j0.034	0.028+j0.039	19420.7	530	620

^{*} Calculations are based on three cables triplexed / concentric shield / Conductor temperature of 90°C / Shield temperature of 45°C / Earth resistivity of 100 ohms-

Table 3 – Weights and Measurements (Metric)

Stock Number	Cond. Size	Diameter Over Conductor	Diameter Over Insulation	Insul. Thickness	Diameter Over Insulation Shield	Concentric Neutral	Neutral DC Resistance 25°C	Jacket Thickness	Approx. OD	Approx. Weight	Min Bending Radius	Max Pull Tension*
	AWG/ Kcmil	mm	mm	mm	mm	No. x AWG	Ω/km	mm	mm	kg/km	mm	newton
TBA	350 (37)	16.79	47.42	14.73	50.72	18x14	0.48	2.03	58.04	3153	695.96	9345
TBA	500 (37)	20.04	50.67	14.73	53.97	16x12	0.34	2.03	62.10	3786	744.22	13350
TBA	750 (61)	24.59	55.45	14.73	58.75	24x12	0.23	2.03	66.88	4689	802.64	20025
TBA	1000 (61)	28.37	59.23	14.73	62.53	20x10	0.17	2.03	71.78	5634	861.06	26700

[♦] Cable marked with this symbol is a standard stock item

^{*} Pulling tension based on pulling eye directly connected to conductor

[†] Ampacities are based on Figure 7 of ICEA T-117-734 (Single circuit trefoil, 100% load factor, 90°C conductor temperature, earth RHO 90, 36" burial depth)

[‡] Ampacities are based on Figure 1 of ICEA T-117-734 (Single circuit trefoil, 100% load factor, 90°C conductor temperature, earth RHO 90, 36" burial depth)

All dimensions are nominal and subject to normal manufacturing tolerances

Table 4 – Electrical and Engineering Data (Metric)

Cond. Size	DC Resistance @ 25°C	AC Resistance @ 90°C	Capacitive Reactance @ 60Hz	Inductive Reactance @ 60Hz	Charging Current	Dielectric Loss	Zero Sequence Impedance*	Positive Sequence Impedance*	Short Circuit Current @ 30 Cycle	Allowable Ampacity in Duct 90°C†	Allowable Ampacity Directly Buried 90°C‡
AWG/ Kcmil	Ω/km	Ω/km	MΩ*km	Ω/km	A/km	W/km	Ω/1000ft	Ω/1000ft	Amp	Amp	Amp
350 (37)	0.1657	0.21	0.0201	0.1608	1.319	10.5052	0.207+j0.069	0.066+j0.048	6920.7	315	370
500 (37)	0.1161	0.15	0.0180	0.1509	1.470	11.7126	0.150+j0.053	0.048+j0.046	9774.0	380	450
750 (61)	0.0774	0.10	0.0158	0.1411	1.690	13.4580	0.102+j0.039	0.034+j0.042	14660.9	470	545
1000 (61)	0.0581	0.08	0.0143	0.1378	1.860	14.8294	0.077+j0.034	0.028+j0.039	19420.7	530	620

^{*} Calculations are based on three cables triplexed / concentric shield / Conductor temperature of 90°C / Shield temperature of 45°C / Earth resistivity of 100 ohms-

[♦] Cable marked with this symbol is a standard stock item

^{*} Pulling tension based on pulling eye directly connected to conductor

[†] Ampacities are based on Figure 7 of ICEA T-117-734 (Single circuit trefoil, 100% load factor, 90°C conductor temperature, earth RHO 90, 36" burial depth)

[‡] Ampacities are based on Figure 1 of ICEA T-117-734 (Single circuit trefoil, 100% load factor, 90°C conductor temperature, earth RHO 90, 36" burial depth)